
We are delighted that our paper “Towards Unified, Dynamic, and Annotation-based Visualizations and Exploration of Annotated Big Data Corpora with the Help of Unified Corpus Explorer” has been awarded the Best Demo Paper at this year’s annual conference of the Nations of the Americas Chapter of the Association for Computational Linguistics (NAACL 2025).
BibTeX
@inproceedings{Boenisch:et:al:2025,
title = {Towards Unified, Dynamic and Annotation-based Visualisations and
Exploration of Annotated Big Data Corpora with the Help of Unified
Corpus Explorer},
author = {B{\"o}nisch, Kevin and Abrami, Giuseppe and Mehler, Alexander},
editor = {Dziri, Nouha and Ren, Sean (Xiang) and Diao, Shizhe},
booktitle = {Proceedings of the 2025 Conference of the Nations of the Americas
Chapter of the Association for Computational Linguistics: Human
Language Technologies (System Demonstrations)},
year = {2025},
address = {Albuquerque, New Mexico},
publisher = {Association for Computational Linguistics},
url = {https://aclanthology.org/2025.naacl-demo.42/},
pages = {522--534},
isbn = {979-8-89176-191-9},
abstract = {The annotation and exploration of large text corpora, both automatic
and manual, presents significant challenges across multiple disciplines,
including linguistics, digital humanities, biology, and legal
science. These challenges are exacerbated by the heterogeneity
of processing methods, which complicates corpus visualization,
interaction, and integration. To address these issues, we introduce
the Unified Corpus Explorer (UCE), a standardized, dockerized,
open-source and dynamic Natural Language Processing (NLP) application
designed for flexible and scalable corpus navigation. Herein,
UCE utilizes the UIMA format for NLP annotations as a standardized
input, constructing interfaces and features around those annotations
while dynamically adapting to the corpora and their extracted
annotations. We evaluate UCE based on a user study and demonstrate
its versatility as a corpus explorer based on generative AI.},
note = {Best Demo Award},
pdf = {https://aclanthology.org/2025.naacl-demo.42.pdf}
}